

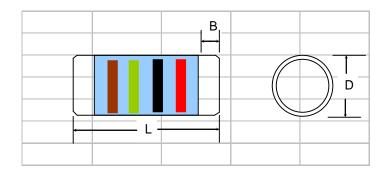
Customer:			
Product:	Metal F	Tilm MELF Resistor. Presicion MM/MML Series	
<u>Size :</u>	0102/0	204/0207	
Issued Dat	e: 17-Ja	n2018	
Edition:	Ver. 2		
		Record of change	
Date	Ver.	Description	Page
7-Jul2017	1		
7-Jan2018	2	Revise ohmic range, add surge curve	2, 6~10

Tel: +886 2 2299 1331 (Rep.)

Fax: +886 2 2298 2466, 2298 2969

Prepared by	Checked by	Approved by	Accepted by (customer)
17-Jul2017	17-Jul2015	17-Jul2015	
Andy Hsu	Hwa Wu	Hwa Wu	

METAL FILM RESISTOR MELF & MINI-MELF MM, MML TYPE


Features

- SMD enabled structure.
- · Conformal Multi-layer Coating Against Humidity
- Tight tolerance down to $\pm 0.1\%$
- Extremely low TCR down to $\pm 10 \text{ PPM/}^{\circ}\text{C}$

Applications

- Telecommunication
- Medical Equipment
- Measurement/Testing Equipment

Construction and Dimension

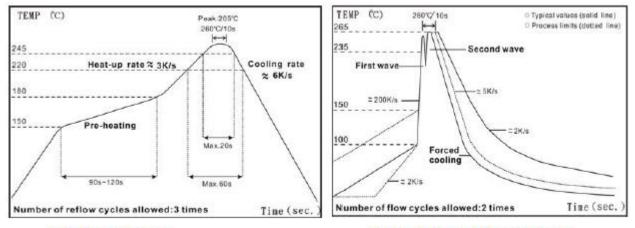
Body Color : Light Blue Marking: Color code (3 or 4 bands)

Tuno	Body Length	Body Diameter	Soldering spot
Туре	(L)	(D)	(B)
MM102	2.20±0.10mm	1.10±0.10mm	0.45 ± 0.05
MML102	2.20±0.10mm	1.10±0.10mm	0.45±0.05
MM204	3.50±0.20mm	1.40±0.15mm	0.80±0.10
MML204	3.50±0.20mm	1.40±0.15mm	0.80±0.10
MM207	5.90±0.20mm	2.20±0.20mm	1.30±0.10
MML207	5.90±0.20mm	2.20±0.20mm	1.30±0.10

General Specification

Туре	Power Rating	Max. Working	Max. Overload		Res	istance Ra	inge		TCR
	(at 70℃)	Voltage	Voltage	±0.1%	±0.25%	±0.5%	±1%	±5%	ppm/°C
					100Ω~	-56KΩ		-	±10
MM102	0.125W	150V	300V	100Ω~	·82KΩ	49.9Ω~ 200KΩ	49.9Ω~ 390KΩ	-	±15
				-	-		40Ω~1MΩ		±25
					-		40Ω~	-1 M Ω	±50
					100Ω-	~56KΩ	1		±15
MML102	0.2W	200V	400V	100Ω~	-82KΩ	49.9Ω~ 200KΩ	49.9Ω~ 390KΩ		±25
					-		40Ω~1MΩ		±50
					-		40Ω~	~1MΩ	±100
						10Ω~20ΚΩ			±10
		200V	400V		1	10Ω~300KΩ	2		±15
MM204	0.25W				10Ω~1MΩ	2	4.02Ω~	~4.7MΩ	±25
				10Ω~1ΜΩ	0Ω~1ΜΩ 1Ω~1ΜΩ			-10MΩ	±50
				-			0.1Ω~	-10MΩ	±100
					1	10Ω~100KΩ	2		±15
NANAT 204	0 4117	2001/	40017		10Ω~1MΩ	2	4.02Ω	2~1MΩ	±25
MML204	0.4W	200V	400V	10Ω~1ΜΩ 1Ω~1ΜΩ		0.2Ω~1ΜΩ		±50	
					-		0.1Ω	~1MΩ	±100
						10Ω~20ΚΩ			±10
]	10Ω~300KΩ	2		±15
MM207	0.5W	300V	600V		10Ω~1MΩ	2	4.02Ω-	~4.7MΩ	±25
				10Ω~1MΩ	<u>1Ω</u>	~1MΩ	0.2Ω~	±50	
					-		0.1Ω~	-10MΩ	±100
					1	10Ω~100KΩ	2		±15
MAL 207	1337	25011	70017		10Ω~1MΩ	2	4.020	4.02Ω~1MΩ ±2:	
MML207	1W	350V	700V	10Ω~1ΜΩ 1Ω~1ΜΩ		0.2Ω~10ΜΩ		±50	
					-		0.1Ω-	~10MΩ	±100

For zero-ohm jumper, resistance value is under 15 m Ω . *

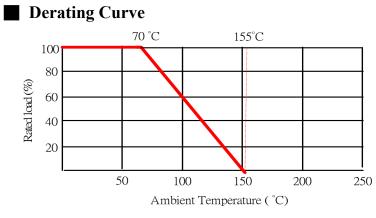

Please consult factory for values out of above range, or the range of tolerance $\pm 0.1\%, \pm 0.25\%$ and $\pm 0.5\%$ Operating Voltage= $\sqrt{(P * R)}$ or Max. operating voltage listed above, whichever is lower. Overload Voltage=2.5* $\sqrt{(P * R)}$ or Max. overload voltage listed above, whichever is lower. *

*

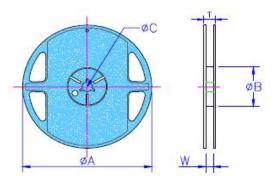
*

Soldering Condition

IR Reflow Soldering


Wave Soldering (Flow Soldering)

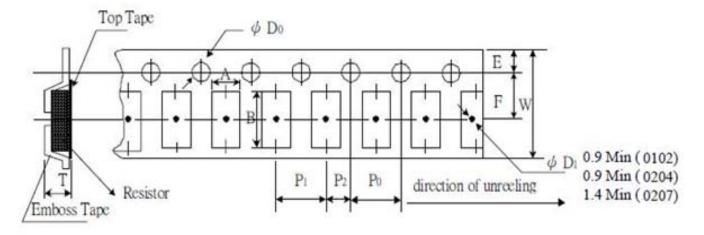
- (1) Time of IR reflow soldering at maximum temperature point 260 $^{\circ}$ C : 10s
- (2) Time of wave soldering at maximum temperature point 260° C : 10s
- (3) Time of soldering iron at maximum temperature point 410° C : 5s


Environmental Ch	aracteristics	
Item	Requirement	Test Method
Temperature Coefficient of	As Spec	-55°C~+125°C, 25°C is the reference temperature
Resistance (T.C.R.)		
Short Time Overload	0204/0207: ±(0.15%+0.05Ω)	RCWV*2.5 or Max. Overload voltage whichever
	0102: ±(0.5%+0.05Ω)	is lower
Insulation Resistance	≥10G	Max. Overload voltage for 1 minute
Endurance	0204/0207: ±(0.5%+0.05Ω)	70±2°C, RCWV for 1000 hrs with 1.5 hrs "ON"
	0102: ±(1.5%+0.05Ω)	and 0.5 hrs "OFF"
Damp Heat with Load	0204/0207: ±(1.0%+0.05Ω)	40±2°C, 90~95% R.H., RCWV for 1000 hrs with
	0102: ±(1.5%+0.05Ω)	1.5 hrs "ON" and 0.5 hrs "OFF"
Thermal Shock	0204/0207: ±(0.5%+0.05Ω)	-55°C/+155°C, No. of cycles required – 300, Maximum
	0102: ±(1.5%+0.05Ω)	Transfer time – 20 sec, Dwell time – 15 min. Air-Air
Bending Strength	±(0.5%+0.05Ω)	Bending once for 5 seconds with 2mm
Solderability	95% min. coverage	245±5°C for 3 seconds
Resistance to Soldering Heat	±(0.5%+0.05Ω)	260±5°C for 10 seconds
Voltage Proof	No breakdown or flashover	1.42 times Max. Operating Voltage for 1 minute
Leaching	Individual leaching area $\leq 5\%$	260±5°C for 30 seconds
	Total leaching area $\leq 10\%$	
Rapid Change of Temperature	±(0.5%+0.05Ω)	-55°C to +155°C, 5 cycles

RCWV(Rated continuous working voltage)= $\sqrt{(P * R)}$ or Max. Operating voltage whichever is lower.

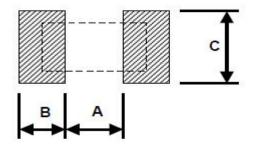
Packaging

Packaging Quantity & Reel Specifications


Tama	Reel Diameter	ФА	ФВ	ФС	W	Т	Emboss
Туре	Diameter	(mm)	(mm)	(mm)	(mm)	(mm)	Plastic Tape (EA)
MM/MML102	7 inch	178.5±1.5	60.0+1.0	13.0±0.2	9.0±0.5	12.5±0.5	3,000
MM/MML204	7 inch	178.5±1.5	60.0+1.0	13.0±0.2	9.0±0.5	12.5±0.5	3,000
MM/MML207	7 inch	178.5±1.5	60.0+1.0	13.0±0.2	13.0±0.5	15.5±0.5	2,000

Part Numbering

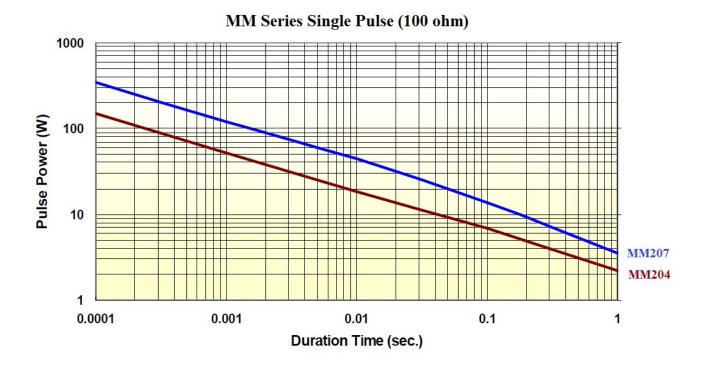
<u>MM204</u>	<u> </u>	<u> </u>	- <u>100KR</u>
Туре	Tolerance	I PPM	I Ohmic value
MM102	$J = \pm 5\%$	B=±10	10R=10Ω
MM204	$F=\pm 1\%$	$C=\pm 15$	120R=120Ω
MML204	D=±0.5%	D=±25	1K2R=1.2KΩ
MM207	C=±0.25%	$E=\pm 50$	1MR=1MQ
MML207	B=±0.1%	$F=\pm 100$	



Emboss Plastic Tape Specifications

Turne	Α	В	W	Е	F	P0	P1	P2	ФD0	Т
Туре	(mm)									
MM/MML102	1.50±0.10	2.30±0.10	8.0±0.10	1.75±0.10	3.50±0.05	4.00±0.10	4.00±0.10	2.00±0.05	1.50+0.10	1.70±0.10
MM/MML204	1.55±0.10	3.65±0.10	8.0±0.10	1.75±0.10	3.50±0.05	4.00±0.10	4.00±0.10	2.00±0.05	1.50+0.10	1.80±0.10
MM/MML207	2.40±0.10	6.15±0.10	12.0±0.10	1.75±0.10	5.50±0.05	4.00±0.10	4.00±0.10	2.00±0.05	1.50+0.10	2.70±0.10

Recommend Land Pattern



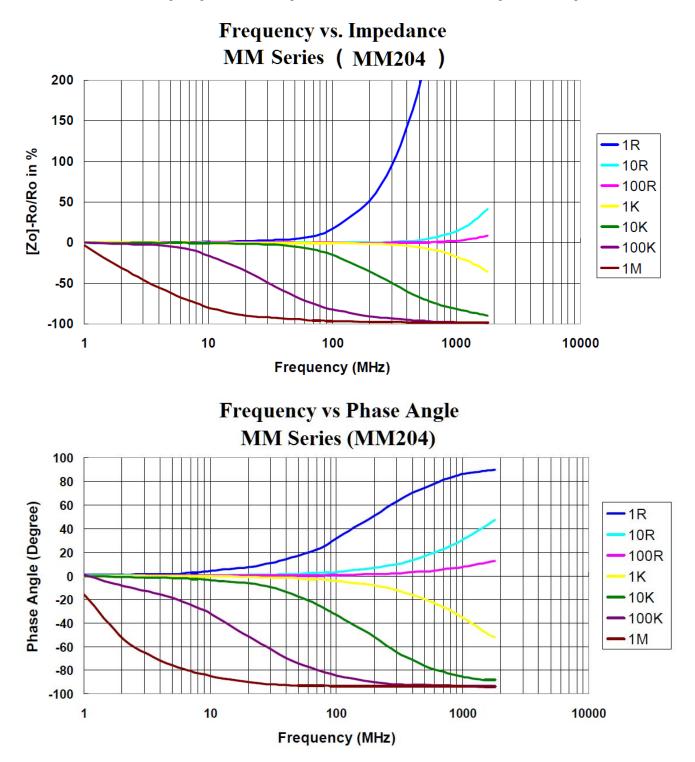
Tours	Α	В	С
Туре	(mm)	(mm)	(mm
MM/MML102	1.0	0.8	1.5
MM/MML204	1.6	1.2	1.6
MM/MML207	3.0	1.7	2.4

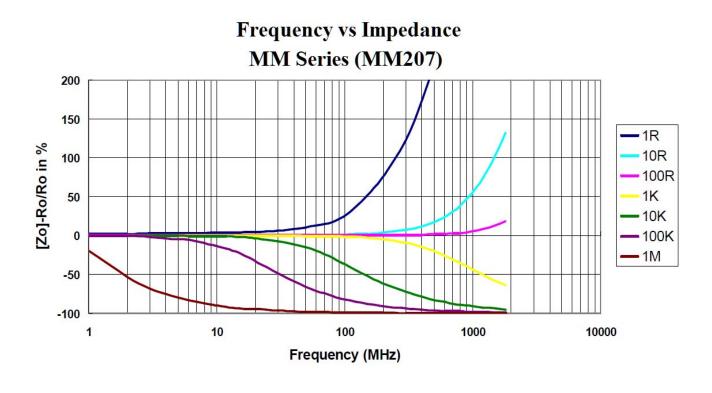
■Pulse withstanding capacity

The single impulse graph is the result of 50 impulses of rectangular shape applied at one-minute intervals. The limit of acceptance was a shift in resistance of less than 1% from the initial value. The power applied was subject to the restrictions of the maximum permissible impulse voltage graph shown.

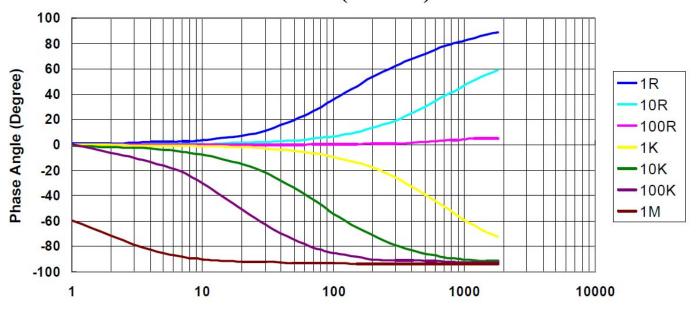
Continuous Pulse

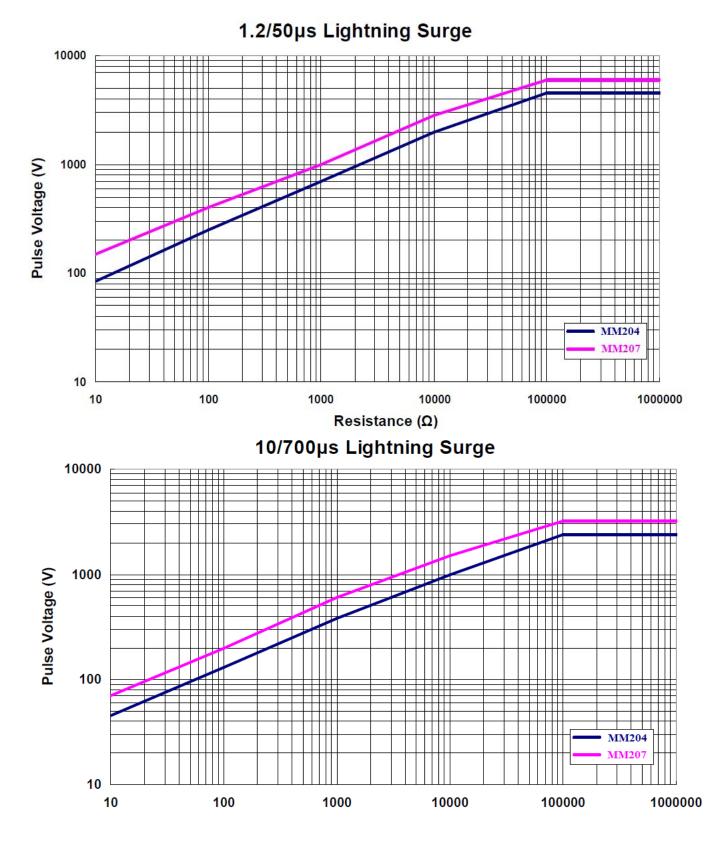
The continuous load graph was obtained by applying repetitive rectangular pulses where the pulse period was adjusted so that the average power dissipated in the resistor was equal to its rated power at 70° C. Again the limit of acceptance was a shift in resistance of less than 1% from the initial value.

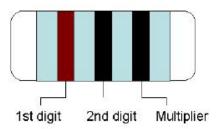

MM Series Continuous Pulse (100 ohm)


Frequency behavior

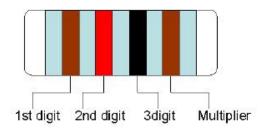
Resistors are designed to function according to ohmic laws. This is basically true of resistors for frequencies up to 100kHz. At higher frequencies, there is an additional contribution to the impedance by an ideal resistor switched in series with a coil and both switched parallel to a capacitor. The values of the capacitance and inductance are mainly determined by the dimensions of the terminations and the conductive path length.


The environment surrounding components has a large influence on the behavior of the component on the printed-circuit board.


Frequency vs Phase Angle MM Series (MM207)


■Lightning Surge

Resistors are tested in accordance with IEC 60 115-1 using both 1.2/50us and 10/700us pulse shapes. The limit of acceptance is a shift in resistance of less than 0.5% from the initial value.



Marking & Resistance Tolerance

±5% E-24 1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1

		1.00	1.02	1.05	1.07	1.10	1.13	1.15	1.18	1.21	1.24	1.27	1.30	1.33	1.37	1.40	1.43	1.47	1.50	1.54	1.58	1.62	1.65	1.69	1.74
1.404	E 00	1.78	1.82	1.87	1.91	1.96	2.00	2.05	2.10	2.15	2.21	2.26	2.32	2.37	2.43	2.49	2.55	2.61	2.67	2.74	2.80	2.87	2.94	3.01	3.09
±1%	E-96	3.16	3.24	3.32	3.40	3.48	3.57	3.65	3.74	3.83	3.92	4.02	4.12	4.22	4.32	4.42	4.53	4.64	4.75	4.87	4.99	5.11	5.23	5.36	5.49
		5.62	5.76	5.90	6.04	6.19	6.34	6.49	6.65	6.81	6.98	7.15	7.32	7.50	7.68	7.87	8.06	8.25	8.45	8.66	8.87	9.09	9.31	9.53	9.76
	с.	10.0	10.1	10.2	10.4	10.5	10.6	10.7	10.9	11.0	11.1	11.3	11.4	11.5	11.7	11.8	12.0	12.1	12.3	12.4	12.6	12.7	12.9	13.0	13.2
		13.3	13.5	13.7	13.8	14.0	14.2	14.3	14.5	14.7	14.9	15.0	15.2	15.4	15.6	15.8	16.0	16.2	16.4	16.5	16.7	16.9	17.2	17.4	17.6
		17.8	18.0	18.2	18.4	18.7	18.9	19.1	19.3	19.6	19.8	20.0	20.3	20.5	20.8	21.0	21.3	21.5	21.8	22.1	22.3	22.6	22.9	23.2	23.4
±0.5%	E-192	23.7	24.0	24.3	24.6	24.9	25.2	25.5	25.8	26.1	26.4	26.7	27.1	27.4	27.7	28.0	28.4	28.7	29.1	29.4	29.8	30.1	30.5	30.9	31.2
±0.25%	E-192	31.6	32.0	32.4	32.8	33.2	33.6	34.0	34.4	34.8	35.2	35.7	36.1	36.5	37.0	37.4	37.9	38.3	38.8	39. <mark>2</mark>	39.7	40.2	40.7	41.2	41.7
±0.1%		42.2	42.7	43.2	43.7	44.2	44.8	45.3	45.9	46.4	47.0	47.5	48.1	48.7	49.3	49.9	50.5	51.1	51.7	52.3	53.0	53.6	54.2	54.9	55.6
		56.2	56.9	57.6	58.3	59.0	59.7	60.4	61.2	61.9	62.6	63.4	64.2	64.9	65.7	66.5	67.3	68.1	69.0	69.8	70.6	71.5	72.3	73.2	74. <mark>1</mark>
		75.0	75.9	76.8	77.7	78.7	79.6	80.6	81.6	82.5	83.5	84.5	85.6	86.6	87.6	88.7	89.8	90.9	92.0	93.1	94.2	95.3	96.5	97.6	98.8

Color	Digit	Multiplier			
Silver	-	10 ⁻²			
Gold	-	10-1			
Black	0	10 ⁰			
Brown	1	10 ¹			
Red	2	10 ²			
Orange	3	10 ³			
Yellow	4	10 ⁴			
Green	5	10 ⁵			
Blue	6	10 ⁶			
Violet	7	10 ⁷			
Grey	8	10 ⁸			
White	9	10 ⁹			